Knockout of the two evolutionarily conserved peroxisomal 3-ketoacyl-CoA thiolases in Arabidopsis recapitulates the abnormal inflorescence meristem 1 phenotype
نویسندگان
چکیده
A specific function for peroxisomal β-oxidation in inflorescence development in Arabidopsis thaliana is suggested by the mutation of the abnormal inflorescence meristem 1 gene, which encodes one of two peroxisomal multifunctional proteins. Therefore, it should be possible to identify other β-oxidation mutants that recapitulate the aim1 phenotype. Three genes encode peroxisomal 3-ketoacyl-CoA thiolase (KAT) in Arabidopsis. KAT2 and KAT5 are present throughout angiosperms whereas KAT1 is a Brassicaceae-specific duplication of KAT2 expressed at low levels in Arabidopsis. KAT2 plays a dominant role in all known aspects of peroxisomal β-oxidation, including that of fatty acids, pro-auxins, jasmonate precursor oxophytodienoic acid, and trans-cinnamic acid. The functions of KAT1 and KAT5 are unknown. Since KAT5 is conserved throughout vascular plants and expressed strongly in flowers, kat2 kat5 double mutants were generated. These were slow growing, had abnormally branched inflorescences, and ectopic organ growth. They made viable pollen, but produced no seed indicating that infertility was due to defective gynaecium function. These phenotypes are strikingly similar to those of aim1. KAT5 in the Brassicaceae encodes both cytosolic and peroxisomal proteins and kat2 kat5 defects could be complemented by the re-introduction of peroxisomal (but not cytosolic) KAT5. It is concluded that peroxisomal KAT2 and KAT5 have partially redundant functions and operate downstream of AIM1 to provide β-oxidation functions essential for inflorescence development and fertility.
منابع مشابه
Peroxisomal ATP-Binding Cassette Transporter COMATOSE and the Multifunctional Protein ABNORMAL INFLORESCENCE MERISTEM Are Required for the Production of Benzoylated Metabolites in Arabidopsis Seeds1[W]
Secondary metabolites derived from benzoic acid (BA) are of central importance in the interactions of plants with pests, pathogens, and symbionts and are potentially important in plant development. Peroxisomal b-oxidation has recently been shown to contribute to BA biosynthesis in plants, but not all of the enzymes involved have been defined. In this report, we demonstrate that the peroxisomal ...
متن کاملNucleotide sequence of the fadA gene. Primary structure of 3-ketoacyl-coenzyme A thiolase from Escherichia coli and the structural organization of the fadAB operon.
The DNA insert of plasmid pK52 contains the fadAB operon coding for the Escherichia coli fatty acid oxidation complex. Studies on the operon's structure and organization revealed that the initiator codon (ATG) of the structural gene for 3-ketoacyl-CoA thiolase, the fadA gene, is located 109 nucleotides 3' to the stop codon (TGA) of the fadB gene that encodes the alpha-subunit, a multifunctional...
متن کاملConservation of two lineages of peroxisomal (Type I) 3-ketoacyl-CoA thiolases in land plants, specialization of the genes in Brassicaceae, and characterization of their expression in Arabidopsis thaliana
Arabidopsis thaliana has three genes encoding type I 3-ketoacyl-CoA thiolases (KAT1, KAT2, and KAT5), one of which (KAT5) is alternatively transcribed to produce both peroxisomal and cytosolic proteins. To evaluate the potential importance of these four gene products, their evolutionary history in plants and their expression patterns in Arabidopsis were investigated. Land plants as a whole have...
متن کاملIdentification of a chloroplast coenzyme A-binding protein related to the peroxisomal thiolases.
A 30-kD coenzyme A (CoA)-binding protein was isolated from spinach (Spinacea oleracea) chloroplast soluble extracts using affinity chromatography under conditions in which 95% of the total protein was excluded. The 30-kD protein contains an eight-amino-acid sequence, DVRLYYGA, that is identical to a region in a 36-kD protein of unknown function that is encoded by a kiwifruit (Actinidia delicios...
متن کاملA defect in beta-oxidation causes abnormal inflorescence development in Arabidopsis.
The abnormal inflorescence meristem1 (aim1) mutation affects inflorescence and floral development in Arabidopsis. After the transition to reproductive growth, the aim1 inflorescence meristem becomes disorganized, producing abnormal floral meristems and resulting in plants with severely reduced fertility. The derived amino acid sequence of AIM1 shows extensive similarity to the cucumber multifun...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 65 شماره
صفحات -
تاریخ انتشار 2014